Character formula for infinite-dimensional unitarizable modules of the general linear superalgebra

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Character Formula for Infinite Dimensional Unitarizable Modules of the General Linear Superalgebra

The Fock space of m+p bosonic and n+q fermionic quantum oscillators forms a unitarizable module of the general linear superalgebra glm+p|n+q. Its tensor powers decompose into direct sums of infinite dimensional irreducible highest weight glm+p|n+q-modules. We obtain an explicit decomposition of any tensor power of this Fock space into irreducibles, and develop a character formula for the irredu...

متن کامل

Character and Dimension Formulae for Finite Dimensional Irreducible Representations of the General Linear Superalgebra

The generalized Kazhdan-Lusztig polynomials for the finite dimensional irreducible representations of the general linear superalgebra are computed explicitly. The result is applied to prove a conjectural character formula put forward by van der Jeugt et al in the late 80s. We simplify this character formula to cast it into the Kac-Weyl form, and derive from it a closed formula for the dimension...

متن کامل

Character and Dimension Formulae for General Linear Superalgebra

The generalized Kazhdan-Lusztig polynomials for the finite dimensional irreducible representations of the general linear superalgebra are computed explicitly. Using the result we establish a one to one correspondence between the set of composition factors of an arbitrary r-fold atypical gl m|n-Kac-module and the set of composition factors of some r-fold atypical gl r|r-Kac-module. The result of...

متن کامل

COMPOSITION FACTORS OF KAC-MODULES FOR THE GENERAL LINEAR LIE SUPERALGEBRA glm|n

The composition factors of Kac-modules for the general linear Lie superalgebra gl m|n is explicitly determined. In particular, a conjecture of Hughes, King and van der Jeugt in [J. Math. Phys., 41 (2000), 5064-5087] is proved.

متن کامل

Equivalence of Blocks for the General Linear Lie Superalgebra

We develop a reduction procedure which provides an equivalence (as highest weight categories) from an arbitrary block (defined in terms of the central character and the integral Weyl group) of the BGG category O for a general linear Lie superalgebra to an integral block of O for (possibly a direct sum of) general linear Lie superalgebras. We also establish indecomposability of blocks of O.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2004

ISSN: 0021-8693

DOI: 10.1016/s0021-8693(03)00538-6